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ABSTRACT 
 

A necessary prerequisite for a successful theory-guided up-scale design of materials with 
application-driven elastic properties is the availability of reliable homogenization techniques. We 
report on a new software tool that enables us to probe and analyze scale-bridging structure-
property relations in the elasticity of materials. The newly developed application, referred to as 
SC-EMA (Self-consistent Calculations of Elasticity of Multi-phase Aggregates) computes 
integral elastic response of randomly textured polycrystals. The application employs a Python 
modular library that uses single-crystalline elastic constants Cij as input parameters and 
calculates macroscopic elastic moduli (bulk, shear, and Young's) and Poisson ratio of both 
single-phase and multi-phase aggregates. Crystallites forming the aggregate can be of cubic, 
tetragonal, hexagonal, orthorhombic, or trigonal symmetry. For cubic polycrystals the method 
matches the Hershey homogenization scheme. In case of multi-phase polycrystalline composites, 
the shear moduli are computed as a function of volumetric fractions of phases present in 
aggregates. Elastic moduli calculated using the analytical self-consistent method are computed 
together with their bounds as determined by Reuss, Voigt and Hashin-Shtrikman homogenization 
schemes. The library can be used as (i) a toolkit for a forward prediction of macroscopic elastic 
properties based on known single-crystalline elastic characteristics, (ii) a sensitivity analysis of 
macro-scale output parameters as function of input parameters, and, in principle, also for (iii) an 
inverse materials-design search for unknown phases and/or their volumetric ratios. 

 

 
INTRODUCTION 
 

Elastic properties are among the most important physical parameters characterizing ma-
terials. They originate from sub-nanometer inter-atomic bonds (Figure 1a) that are governed by 
the fundamental laws of quantum-mechanics and propagate through multiple length-scales (see 
e.g. Figure 1b,c) up to the macroscale (Figure 1d). Atomic-scale elasticity is, for most crystalline 
materials, anisotropic. This means that the energy necessary to deform a crystal by a certain 
constant amount of strain is different when applying the strain along symmetrically inequivalent 
crystallographic directions. The anisotropy may be conveniently visualized by the directional 
dependence of Young’s modulus that connects the energy and the applied strain (see Figure 1d). 
When going up-scale, most metallic materials used in industrial applications are polycrystalline 
aggregates consisting in individual single-crystalline grains with different orientations (see 
Figure 1c). Combining state-of-the-art computational approaches, such as quantum-mechanical 
calculations (Figure 1e,f) and linear-elasticity homogenization theories (Figure 1g) within a 
suitable inter-disciplinary scheme, provides a platform for predicting a macroscopic elastic 
response of these aggregates (Figure 1h) without any empirical input.  
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Figure 1. Schematic picture connecting the multi-scale structure of materials (a)-(d), 

represented here by a stainless-steel hip-replacing medical implant, with corresponding 
computational approaches to elastic properties (e)-(h).  

 
Innovative industrial products require new materials with macroscopic properties dictated 

by specific applications and the overall elastic response and its anisotropy are among them. 
Design specifications related to macroscopic shear or Young’s moduli are related, for example, 
to prevent resonant vibrational frequencies for safety reasons. Another field of applications are 
interfaces between dissimilar materials where a too large elastic mismatch may results in a 
failure during the operational lifetime. The latter case applies e.g. to implant alloys, as used for 
hip replacements, that are in direct contact with elastically much softer bones. The elastic 
mismatch is known to be one of the reasons causing implant failures and softer implant materials 
with bone-matching elasticity are being designed (see e.g. our recent work [1] and references 
therein). 

Our work has been motivated by a clear need for a thorough understanding of structure-
property relations connecting elastic properties of materials over multiple length-scales. We have 
developed an open-access web-based application that uses a Python modular library calculating 
the integral macroscopic elastic response of aggregates employing self-consistent mean-field 
homogenization methods. In order to avoid an arbitrary complexity stemming from textured 
aggregates with specific size, shape and orientation distributions of grains, we limit ourselves in 
this project to so-called texture-free aggregates containing equally-sized grains that are shaped as 
polygons. Such aggregates elastically respond like a macroscopically homogeneous effective 
medium and are characterized by only two elastic moduli, such as bulk modulus B, Young’s 
modulus Y or shear modulus μ,  that are important materials-design criteria (see e.g. Refs. [1,5]). 



THEORY  

 The polycrystalline elastic response of multi-phase aggregates can be determined within a 
self-consistent solution for the effective medium [2, 3] from (i) the elastic single-crystalline 
constants and (ii) the volumetric fractions of individual components. The approach is based on 
the multiple scattering theory and was originally applied to predict elastic properties of single-
phase polycrystals with cubic symmetry by Zeller and Dederichs [4]. The concept was later 
generalized by Middya and Basu [2] to single-phase aggregates with non-cubic symmetries and 
further extended by Middaya et al. [3] to multi-phase composites. Following the original 
approach by Zeller and Dederichs [4], the basic steps of the effective medium approach may be 
found below. A macroscopic effective medium that is elastically homogeneous and contains 
microscopic fluctuations may be characterized by an effective elastic constant Cijkl* defined by 
 

(1) 
 

where σij(r) and ϵkl(r) are the local stress and strain fields at point r, respectively, and the angular 

brackets denote ensemble averages. Assuming the aggregate is in equilibrium, the local field of 
elastic stiffnesses C(r) can be decomposed into an arbitrary constant part C0 and a fluctuating 

part δC(r). The resulting local strain field, ϵ, can then be written (in a short-hand notation) as 

 

(2)
 

where ϵ0 and G are the strain and modified Green’s function of the medium defined by C0. The 

T-matrix is given by 
(3)

 

where I is the unit tensor. Employing the local stress-strain relation and equations (1) and (2) we 
obtain 

(4)

 



The exact evaluation of ⟨T⟩ and ⟨GT⟩ is unfortunately impossible for any realistic case. 

However, by neglecting inter-granular correlations, the T-matrix can be rearranged in terms of 
single-grain t matrices (tα) for each grain α 
 

(5)

Inserting equation (5) into equation (4) gives 
 

(6)
 

For a single phase polycrystal, the self-consistent solution of eq. 6 can be obtained by choosing a 

C0 that satisfies the condition ⟨τ⟩ = 0. For a multi-phase polycrystal, a solution to equation (6) 

can be found by accounting for the volume fraction vi and τi of each phase i [2] via  

(7)

 

The actual equations for specific crystallographic classes may be found for example in Refs. 
[2,3,5]. Specifically for the single-phase cubic crystallites the methods results in the same 
equation as the Hershey’s homogenization scheme [6].  

 
 



Figure 2 Directional dependencies of single-crystalline Young's modulus (in GPa) visualized by 
the SC-EMA code based on elastic constants collected from literature (Al [7], Fe [8], Co [9], Mg 
[10], Sb [11], U [12]). Please mind different color-coded pressure scales for each sub-figure. 
 
DISCUSSION  
 
 In order to illustrate the method in case of single-phase polycrystals, we have used 
published elastic constants for a few elements (Al [7], Fe [8], Co [9], Mg [10], Sb [11], and U 
[12]) crystallizing in phases with different symmetries. The single-crystalline anisotropy of these 
elements is visualized as directional dependencies of Young’s modulus in Figure 2. Based on the 
elastic constants, we have employed the method as described above to predict polycrystalline 
elastic moduli (bulk modulus B, shear modulus μ, Young’s modulus Y, and Poisson ratio ν). The 
computed values are summarized together with available experimental data in Table I. The 
agreement between our prediction and experimental data is in general very good.  
 
Table I SC-EMA computed homogenized elastic moduli (bulk B, shear μ, and Young's Y in 
GPa) and Poisson's ratio ν with experimental data in brackets (http://www.periodictable.com). 

 

 
 
Figure 3 Computed dependencies of homogenized shear modulus in 2-phase Mg-Ca composites 
(a) and generic 3-phase (b) composites as functions of the volumetric ratio of the phases as 
visualized by the SC-EMA software package. The 2-phase composites contain phases of the 
same symmetry (elemental Ca and Mg that both crystallize in the hexagonal close-packed 
phase), while the generic three-phase composites in part (b) possess cubic, tetragonal, and 
hexagonal, respectively (see the text for details). Crosses in (b) indicate computed data-points. 



 
Finally, in order to illustrate further features of our software, exemplarily the elasticity of 

2-phase Mg-Ca composites and generic 3-phase ones are shown in Figure 3. Figure 3a visualizes 
the polycrystalline Young’s modulus of 2-phase Ca-Mg composites as a function of the Mg/Ca 
volumetric fraction. Figure 3b shows the shear modulus of hypothetical 3-phase aggregates with 
(i) a cubic phase with elastic constants C11 = 107 GPa, C12 = 60 GPa, and C44 = 28 GPa, (ii) a 
tetragonal phase with constants C11 = 275 GPa, C12 = 179 GPa, C13 = 152 GPa, C33 = 165 GPa, 
C44 = 54 GPa, and C66 = 113 GPa, and (iii) a hexagonal phase with C11 = 167 GPa, C12 = 13 GPa, 
C13 = 66 GPa, C33 = 66 GPa, C55 = 140 GPa. As seen, the predicted trends of both Young’s 
modulus for 2-phase composites in Figure 3a and the shear modulus of 3-phase ones in Figure 3b 
are rather monotonous and nearly linear. This is essential as far as a future inversion of this 
homogenization technique is concerned. The same close-to-linear trends were also predicted in 
case of two-phase Ti-Nb alloys in Ref. [5]. It is thus likely that after a thorough analysis of the 
underlying mathematical backbone of this mean-field homogenization method, it will be possible 
to find its inversion in order to further accelerate a theory-guided materials design of alloys with 
application-driven macroscopic elastic properties.  

 

CONCLUSIONS  
 

To conclude, we have developed a software tool for scale-bridging modeling of elastic 
properties of materials. The main purpose of the code is the prediction of the homogenized 
elastic response of texture-free aggregates containing either one or more phases that can be of 
cubic, tetragonal, hexagonal, orthorhombic, or trigonal symmetries. In case of multi-phase 
polycrystalline composites, the shear moduli are computed as a function of volumetric fractions 
of phases present in the aggregate. The input single-crystalline elastic constants are also checked 
with respect to conditions of mechanical stability.  

For single-phase polycrystals the software allows studying the elastic anisotropy at 
atomistic scale by visualizing the value of single-crystalline Young’s modulus along the main 
three crystallographic axes. Specifically in case of cubic crystals, the code also evaluates its 
planar counterpart, the area modulus (see details in Refs. [13, 14]) for (001), (110) and (111) 
atomic planes. The input single-crystalline elastic constants are then used to compute polycrys-
talline elastic moduli (bulk, shear, and Young) employing self-consistent homogenization 
scheme together with corresponding Voigt [15], Reuss [16] and Hashin-Shtrikman [17] bounds.  

Our software library [18] allows to analyze scale-bridging structure-property relations 
and can be used as (i) a toolkit for a forward prediction of macroscopic elastic properties (ii) a 
sensitivity analysis of macro-scale output parameters as function of input parameters, and (iii) in 
principle also for an inverse theory-guided materials-design search for unknown phases and/or 
their volumetric ratios that would result in alloys with specific (e.g. application-dictated) 
macroscopic elasticity.  Further development is planned regarding (i) higher-order elastic proper-
ties, (ii) application of inverse modeling tools, and (iii) description of samples with textures. 
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